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The wide adoption of electronic medical records and subse-
quent availability of large amounts of clinical data provide a
rich resource for researchers. However, the secondary use
of clinical data for research purposes is not without limita-
tions. In accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses guidelines, we con-
ducted a systematic review to identify current issues related
to secondary use of electronic medical record data via
MEDLINE andCINAHLdatabases. All articles published until
June 2018 were included. Sixty articles remained after title
and abstract review, and four domains of potential limi-
tations were identified: (1) data quality issues, present in
91.7% of the articles reviewed; (2) data preprocessing
challenges (53.3%); (3) privacy concerns (18.3%); and
(4) potential for limited generalizability (21.7%). Researchers
must be aware of the limitations inherent to the use of elec-
tronic medical record data for research and consider the
potential effects of these limitations throughout the en-
tire study process, from initial conceptualization to the
identification of adequate sources that can provide data
appropriate for answering the research questions, analy-
sis, and reporting study results. Consideration should
also be given to using existing data quality assessment
frameworks to facilitate use of standardized data quality
definitions and further efforts of standard data quality
reporting in publications.
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Secondary use
esearch using electronic medical record (EMR)
data is a relatively new method of inquiry when
R compared to other types of research. Electronic
medical record data impart several benefits, such
as low cost, large volume of data available, and

saved time because there is no need to recruit and retain
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participants,1,2 although considered revisions to the US Com-
mon Rule and the European General Data Protection Require-
mentsmay affect future consent requirements.3,4However, there
are valid concerns regarding the use of EMR data for research
and the potential limitations it entails. Electronic medical record
data, or any data that were not originally collected for the pur-
pose of research, carry a risk of poor data quality, identified by
van der Lei5 as “the first law of informatics,” which states that
data should be used only for its originally intended purpose.
More recent literature has countered that idea and instead em-
braced the concept of “fitness for purpose” or “fitness for
use.”2,6–8 This approach assumes that a data set is appropri-
ate depending on intended use; for researchers, it depends
on the research question.2,6,8 Understanding the limitations
of EMR data and developing technologies and methodolo-
gies that mitigate these inherent limitations are a burgeoning
aspect of informatics research. Therefore, the purpose of this
article is to conduct a comprehensive and updated systematic
review of the literature to identify and describe the known chal-
lenges of using EMR data for secondary research purposes and
to provide a beginner's guide that summarizes themany aspects
one should consider.

METHODS
Search Strategy
In accordance with Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) guidelines, an
exhaustive literature search was performed using MEDLINE
and CINAHL databases for articles published up to the date
on which the search was conducted, June 26, 2018.9,10 The
search was not limited by date, because use of EMR data
for research purposes is a relatively new and foundational
concept discussed in older articles could have been missed
if the search had been limited by date. The topic of sec-
ondary use of EMR data has only become relevant since
the mid-1990s as primary use of EMRs for clinical docu-
mentation increased in popularity. MEDLINE and
CINAHL databases were searched using the following
terms: “EMRdata + research + limitations,” “EMRdata+
research + challenges,” “EMR data + quality + research,”
“EMR data + research + pitfalls,” “using EMR data for
research,” “EMR data + suitability for research,” and
“EMR data + data quality + research.”
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Inclusion Criteria
Studies published in English that discussed the limitations of
EMR data in the context of secondary use for research on a
conceptual level were included in the analysis.

Exclusion Criteria
Articles were excluded if their discussion of EMR use was
limited to primary clinical use, such as rates of or barriers
to EMR implementation for use in clinical documentation.
Studies addressing quality improvement or development of
clinical decision support applications or other purely clinical
applications were also excluded. Articles related to develop-
ment of data remediation methodologies aimed specifically
at circumventing barriers, such as natural language process-
ing applications or other preprocessing software, rather than
identification and description of the barriers that necessitate
such applications, were considered beyond the scope of this
article and thus were also excluded.

Study Selection
Duplicate articles were removed, and titles were reviewed by
one author using the previously discussed inclusion and ex-
clusion criteria. The abstracts of those articles were further
reviewed. After abstract review, full-text articles were reviewed.
An ancestor search was then conducted on the references of
the included articles, following the same title review, abstract
review, and full-text review process.
RESULTS
A total of 3462 articles were returned in the search (Figure 1).
Duplicates were removed, reducing the total to 1590 articles.
After title review, 197 articles remained. Abstract review
reduced the total number of articles to 81, and 32 of those
articles were included in the analysis after full-text
review. The ancestor search produced another 28 articles
that were included in the review, bringing the total number
of articles to 60. Of these 60 articles, 22 were author
manuscripts, seven were reviews, two were case studies,
and two used qualitative methods including workshops and
stakeholder interviews. There were 16 articles reporting
original research findings, one of which was a prospective
randomized controlled trial.

Review of the articles yielded four domains of limita-
tions on the secondary use of EMR data for research: pri-
vacy concerns, data extraction and transformation challenges,
problems with data quality, and the potential for limited
generalizability. Problems with data quality were further
divided into subdomains of completeness, correctness, and
currency.We adopted the terminology proposed byWeiskopf
et al2,6,11 due to their thorough definitions and widespread
use, and to enable consistent use of existing terms and con-
tinued development of standardized frameworks for data
Volume 38 | Number 7
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quality assessment. An overwhelming majority of studies
were found to include discussion related to more than one
domain. Data quality was discussed in 91.7% of the articles
included in the review. Issues encountered during data pre-
processing, such as issues with data extraction and transfor-
mation, were explored in 53.3% of articles reviewed, and
privacy and generalizability were mentioned in 18.3% and
21.7% of articles, respectively.

Privacy
Privacy was noted to be a challenge in EMR-based research
in 18.3% of articles. The secondary use of clinical data for
research does not require consent in many cases, but it does
require data to be collected and managed in a way that does
not include identifiable personal health information to min-
imize the risk of reidentification.12 There are two ways to
achieve this. First is using limited data sets, which can retain
dates and ages, geographic locations, and unique patient
identifiers that cannot be used to reidentify the patient.13 A
second option is developing a deidentified data set, from
which all identifying information are removed, including
dates, geographic locations, and unique patient identifiers.13

However, even when using exempt data sets, or deidentified
data sets, institutional review is still required to determine
that the data and proposed study meet the criteria.13 The in-
stitutional review board will determine if, and at what level,
consent is required from participants.13 The type of data set
a researcher chooses largely depends on what information is
necessary to answer the research question of interest. When-
ever possible, research should be conducted using the mini-
mum amount of necessary personal information.

Another strategy to preserve privacy when using EMR
data is to use aggregated or pooled data.12,14,15 When
individual-level data are not necessary to answer a particular
research question, data can be combined to form population-
level data, an approach that is often used in genomic stud-
ies.13 Population data are used when patients are grouped
by provider, hospital or unit, or some other grouping factor
in which individual patient data are not needed. These
methods ensure compliance with requirements to protect
patients' privacy.12,13

Data Preprocessing: Extraction and Transformation
Extraction of EMR data falls under the umbrella of data
preprocessing, which also includes cleaning, transforming
data into a statistically interpretable format, and loading
the transformed data into applications that enable statistical
analysis. Extraction is the process by which data are located
within an EMR. Preprocessing is noted to be a “laborious”
process consuming a majority of the project time12,13,16–19

that requires merging data from multiple sources, in multi-
ple different formats in a database, into a single format that
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FIGURE 1. Flowchart summarizing article inclusion and exclusion filtering, as outlined by the Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) 2009 guidelines.9,10
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is analyzable with statistical software. Relevant research in-
formation can be documented in an EMR in a variety of for-
mats, such as drop-down menus, free-text narrative notes,
radiographic images, and laboratory values.1,6,12,15–17,19–33

Each of these may be documented within a different soft-
ware system. All relevant data must be merged into a single
format,6,12,13,16–18,20,24,26,34,35 which is often complicated
because the various software systems are usually not inter-
operable.6,12,14,17,27,36 Interoperability, as defined by the
Healthcare Information and Management Systems Soci-
ety, is “the ability of different information technology sys-
tems and software applications to communicate, exchange
data, and use the information that has been exchanged.”37

Semantic interoperability, the most complex level, re-
quires that systems be able to exchange data and interpret
the data for further use.37,38 In the context of data extrac-
tion and transformation for EMR-based research, better
interoperability can improve preprocessing, so that more
data can be merged and interpreted by receiving systems
more efficiently, thereby decreasing the time required to ex-
tract and transform data. Here, we encounter the barrier that
the need to maintain anonymity places on data preprocess-
ing. In order for multiple formats of data from multiple
sources to be merged, one needs a way to identify separate
pieces of data belonging to the same patient.12,16,17,34 One
approach to transforming these data is to develop randomly
generated unique identifiers that are substituted for patient
identifiers like the medical record. Another approach, hashing,
uses a mathematical formula to code data such that it cannot
be decrypted to reveal protected health information, but can
still be used to link data from different sources. Hashing is
emerging as a method of ensuring that privacy is protected
during data extraction.12,13 Tamersoy et al39 provide an ex-
ample of this technique.

Another challenge in data extraction is proper identifi-
cation of eligible records.18,20,22,23,29,32,40 This task is under-
taken based on a priori inclusion criteria, such as the diagnosis
of a particular illness, age within a certain range, or a record
generated within a certain time period, and is also known as
phenotyping.12,41 Due to the volume of data available in
EMRs, in order for a record that meets the inclusion criteria
to be correctly identified as eligible, the required elements
must be searchable.13,17 Billing codes, such as the 9th and
10th revisions of the International Classification of Diseases, have
been widely used for this purpose, but inaccurate and miss-
ing billing codes result in missed records not identified by
search criteria or records included when a diagnosis was
not actually present.17,20,22,29,36,42 Because of the difficulty
of accurately identifying all patients who meet the specified
inclusion criteria and excluding patients who do not, caution
is required if the goal is to establish incidence and/or preva-
lence, due to the difficulty of establishing a denominator.43
Volume 38 | Number 7
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A third idea prevalent in the literature with regard to
data extraction is the lack of standardization in terminology
used for diagnosis or clinical findings.13,15,17,18,20–22,24,27,33–36,44–47

Free-text narrative notes present a particular challenge to
this aspect of EMR-based research.1,6,12,15–32 While they fa-
cilitate documentation and generation of a record that is
considered complete from a clinical standpoint, there is wide
variation in the human use of language encountered in nar-
rative notes; there are many ways for different providers to
identify the same diagnosis, clinical problem, or response
to treatment with different terminology. This lack of stan-
dardization in narrative notes means that many eligible re-
cords may be missed if the exact terminology used in the
record is not searched.22,36 Circumventing the challenge
posed by human use of language in narrative notes has be-
come a focus of healthcare informatics research. Recent ad-
vances in the development of natural language processing
applications have demonstrated reliable techniques to iden-
tify representative samples.48–51

Data Quality
The concept of data quality is complex and context-
dependent.2,6,7,22,30,52–54 The absence of data2,6,7,11,13–17,19–23,
25–29,31–33,36,40,42,47,53,55–67 and presence of inaccurate data
create concern when using EMR data for research.6–8,13,14,18–22,
25,28,31–34, 36,40,42,47,52, 53,56–58,60–62,64,65,67,68 Many authors sup-
port the need to evaluate data quality prior to attempting to
answer a research question when using EMR data.2,6,7,13,
22,28,30,53,60,65 There is a lack of standardized methods of
data quality assessment in EMR-based research,6,23,24,28,53,54,60,65

as well as a lack of a standardized reporting guidelines on data
quality assessment.23,24,28,53,54,60 Development of a standard-
ized method of assessing data quality is an issue currently at
the forefront of medical informatics research. While there is
not a universally accepted data quality assessment framework,
Kahn and colleagues’60 harmonized data quality assessment
terminology and framework are the most developed. The
lack of a widely used method of data quality assessment and
reporting in EMR-based research inhibits comparison among
studies and valuation of the meaning of EMR-based study
findings.11,54,60,65 Although reviewing methods of data
quality assessment is beyond the scope of this article, we
have provided references to approaches in Table 1.

There is inconsistent use of terminology in the field of data
quality assessment.6,33 In addition to the terms “complete-
ness” and “accuracy” previously discussed, some authors refer
to “missing data” or “incomplete data”16,17,20–23,26,27,29,36,55–58

and “inaccuracies.”20–22,26,33,36,57 Heinze et al25 refer to
“fragmentary information” and “imprecise measurements.”
“Discordance” and “(in)consistency” have been used to de-
scribe the concept of concordance.13,41,57,58,61 Few authors
define these terms, so it is possible similar terms are being used
CIN: Computers, Informatics, Nursing 341
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Table 1. Challenge Domains Identified in Each Article

Author Data Quality Preprocessing Generalizability Privacy

Afzali et al55 ✓

Arterburn et al56 ✓ ✓

Bagley and Altman43 ✓ ✓

Baier et al21 ✓ ✓

Botsis et al57 ✓ ✓

Brookhart et al70 ✓ ✓

Coleman et al22 ✓ ✓

Coorevits et al14 ✓ ✓ ✓

Damotte et al69 ✓ ✓

Davis and Haines23 ✓ ✓

de Lusignan et al44 ✓ ✓

de Lusignan et al45 ✓ ✓

de Lusignan et al66 ✓ ✓

de Lusignan and van Weel15 ✓ ✓ ✓

Dean et al24 ✓ ✓

Embi and Payne76 ✓ ✓

Faulconer and de Lusignan58 ✓

Haneuse and Daniels59 ✓ ✓

Heinze et al25 ✓ ✓ ✓

Hersh et al26 ✓ ✓ ✓

Hogan and Wagner42 ✓

Holve et al34 ✓ ✓ ✓

Johnson et al77 ✓

Johnson et al67 ✓

Kahn et al60 ✓

Kanas et al17 ✓ ✓ ✓ ✓

Kheterpal13 ✓ ✓ ✓

Lau et al61 ✓

Leo et al68 ✓

Lin et al27 ✓ ✓ ✓

Lobach and Detmer35 ✓ ✓

Logan et al52 ✓

Majeed et al28 ✓ ✓

Murphy et al12 ✓ ✓

Newton et al41 ✓ ✓

Puttkammer et al53 ✓

Reimer et al62 ✓

Rosenthal46 ✓ ✓

Rusanov et al63 ✓ ✓

Safran et al1 ✓ ✓

Schwartz et al29 ✓ ✓

Stewart et al30 ✓ ✓

Sutherland et al16 ✓ ✓

Tamersoy et al39 ✓

Terry et al20 ✓ ✓

Thiru et al54 ✓

van Velthoven et al64 ✓

Wagner and Hogan31 ✓

Wasserman32 ✓ ✓ ✓

Weiner et al19 ✓ ✓

(continues)
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Table 1. Challenge Domains Identified in Each Article, Continued

Author Data Quality Preprocessing Generalizability Privacy

Weiskopf et al65 ✓

Weiskopf et al11 ✓

Weiskopf et al2 ✓ ✓

Weiskopf et al6 ✓

Wang and Strong8 ✓

Weng et al40 ✓ ✓

Yamamoto et al18 ✓ ✓

Yim et al47 ✓

Young et al33 ✓ ✓ ✓

Zampi et al36 ✓ ✓

Zozus et al7 ✓

This table is intended to serve as a quick reference to identify additional articles for a more in-depth discussion on topics of interest.
to discuss different concepts. It is equally possible that concep-
tually dissimilar terms are being used interchangeably. There-
fore, an exploration of the conceptual definitions of frequently
used terms in data quality assessment is a necessary exercise.
Weiskopf et al65 provide such an exploration and have identified
completeness, correctness, and currency as integral components
of data quality assessment, with concordance and plausibility
identified as methods of assessing correctness.

Completeness
Hogan and Wagner42 define completeness as “the propor-
tion of data observed that are actually recorded” Weiskopf
et al11 provide a more comprehensive approach to assessing
data completeness. Completeness has four potential defini-
tions, which are context-dependent: (1) if data are expected
to be present in a record, they are present; (2) adequate
breadth; (3) depth of data over time; and (4) enough data
are present in the record to answer the question of interest
about a clinical problem.11,65 Complete data, from a clinical
perspective, are data that represent everything that was ob-
served in the clinical encounter; completeness from a re-
search perspective is all data that are necessary to answer
the research question at hand.2 The latter definition intro-
duces the concept of “fitness for purpose” or “fitness for
use.”2,6–8 The concept of “fitness for purpose” asserts that
whether data quality is sufficient depends on the presence of
data required to answer the research question(s.)2,6,8

An additional prominent theme in the literature regard-
ing data completeness was selection bias resulting fromwors-
ening disease severity associated with more complete
data.2,17,19,24,36,43,59,61,63,69 For example, Weiskopf et al2,63

demonstrate that availability of data that are complete from
a research perspective depends on the severity of illness,
resulting in potential for confounding effects.70 Patients with
more advanced illness will seekmedical treatment and require
follow-up visits more often than healthy individuals, and
Volume 38 | Number 7
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therefore more EMR data will be generated on their behalf.
This is an especially important limitation for researchers using
EMR data to be aware of, as it means that the study sample
may not accurately represent the population of interest.

Completeness of data depends on the context in which the
data are to be used,2,11 how completeness is defined in that
particular assessment of data quality,6 and the influence of
provider-related factors on the documentation of a complete
record. These factors may include “enthusiasm,”28 what is
perceived as clinically necessary by the clinician,20 and that
severity of illness may produce a sample population that se-
verely limits the generalizability of the study results.2,36,43,61,63,69

Variability of documentation practices exists among institu-
tions, among clinics within the same institution, and among
clinicians.46 Completeness may also be affected by billing
methods.32,47 Yim et al. describe differences in coding prac-
tices between a Veterans Affairs (VA) hospital and a commu-
nity hospital.47 The VA hospital had fewer diagnoses coded,
which the authors attribute to a capitated billing system
resulting in a reduced incentive to code.47 These authors also
note that longitudinal studies using EMR data are especially
vulnerable to missing data as time progresses,47 which
threatens the internal validity of any study using this design.
Data completeness has also been found to increase with the
availability of free-text fields; however, this benefit was noted
to come at the expense of the accuracy of decision support
systems.31 Haneuse and Daniels59 suggest considering why
data are present, rather than why data are not present, when
assessing data completeness.

Correctness
The concept of correctness was the second most commonly
addressed. However, the concept of correctness was more
often referred to as “accuracy.”32,33,36,56,68 Hogan and
Wagner42 use the term “correctness,” which they define
as “the proportion of recorded observations that are
CIN: Computers, Informatics, Nursing 343
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CONTINUING EDUCATION
correct,” as a measure of accuracy. According to Hogan and
Wagner,42 accuracy of data should be monitored and is
highly variable in EMRs.6,42 Weiskopf et al65 define correct
data as data that are free from error. Weiskopf et al6,65 de-
scribe concordance and plausibility as falling under the
scope of correctness. Concordance is the agreement among
different elements of data from different sources or the longi-
tudinal agreement of data over time.6,62 Plausible data, as
defined byWeiskopf et al,.6,65 are data that “make sense” ac-
cording to clinical knowledge or are feasible given other data
that are present in the record. Kahn et al60 add six addi-
tional types of correctness that include plausibility broken
down into uniqueness, atemporal, and temporal, and con-
cordance related to value, relational, and computational.

Currency
There is limited literature addressing the concept of cur-
rency. Puttkammer et al53 refer to the concept as “timeli-
ness” of documentation. Currency is defined at how well
data represent the patient's state at a particular time.6,62

Weiskopf et al65 note that assessment of currency of EMR
data can only be done when time-stamped metadata are
available and that the determination of what constitutes ad-
equate currency is context-dependent.

Limited Generalizability
That EMR data were not collected for research purposes is
frequently expressed in the literature as a major limitation
of the use of EMR data for research.5,6,13,17,19,20,30,32 The
fact that clinical data are not routinely collected by the same
person in a standardized way undermines the scientific rigor
achievable with this type of data.6,17,19 Additionally, the
equipment used to collect clinical data is rarely calibrated be-
fore each use or even at regular time points. This lack of
rigor in the data collection process has been noted to contrib-
ute to a lack of meaning in any results obtained.30,61 Con-
versely, the argument has also been made that this real-world
method of data collection enhances internal validity.63

Electronic medical record data carry a risk of systematic
error.56 According to Sutherland et al,16 some amount of
missing data may not be problematic because of the very
large sample size typical of studies using EMR data. How-
ever, findings may be less generalizable to other institutions
or other patient populations due to the sampling bias inher-
ent in the use of EMR data.17,29,43 Handling of missing EMR
data has many unique considerations, which are beyond the
scope of this article. Bounthavong et al71 andWells et al72 pro-
vide examples of several ways to handle missing data.

Additionally, the volume of EMR data sets is potentially
very large. It is possible to achieve statistical significance sim-
ply because of the size of the sample or, in other words, com-
mit a type 1 error. Researchers should be aware of the potential
344 CIN: Computers, Informatics, Nursing
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for a type 1 error during analysis and interpretation of re-
sults. This effect can be mitigated by setting α at .01 or
stricter. Further, using a conceptual model that is based on
sound reasoning and prior empirical evidence to form a
priori definitions of the concepts and relationships being
tested can provide support for the statistical testing results.

DISCUSSION
We completed a systematic review of articles discussing the
challenges faced when using EMR data for the secondary
purpose of research. Our analysis led to identification of four
domains of potential limitations: privacy, data extraction
and transformation, data quality, and potential for limited
generalizability. Several authors provide reviews that include
challenges belonging to these domains.15,20,24,26 However,
even the most recent of these articles were almost a decade
old at the time of our search. The field of health informatics,
and especially data quality assessment, is rapidly evolving.
Thus, a more recent review was necessary. A recent review
was published by Yim et al47; however, this review primarily
focuses on the domain of data quality. Thiru et al54 provide
another review focused on data quality. Issues encountered
in data extraction and privacy were reviewed by Coorevits
et al.14 A recent, comprehensive systematic review encompass-
ing multiple domains of challenges of secondary EMR data
use was not found in our search.

A noteworthy observation is that an overwhelmingmajor-
ity of this work was conducted in the primary care setting. It
remains unknown whether the effect of disease severity on
completeness of data is as profound in the acute or intensive
care settings as it is in primary care settings. The effect of dis-
ease severity could potentially be decreased in studies con-
ducted with acute and intensive care patient populations
due to all subjects being hospitalized, because of both stricter
inclusion criteria and mandatory documentation require-
ments in the hospital setting. In the hospital setting, espe-
cially in intensive care, there is a wide range of acuity of
illness. As in the primary care setting, higher acuity necessi-
tates more frequent intervention and therefore more fre-
quent documentation. The degree to which disease severity
affects data quality likely depends on which data elements
are required to answer the study questions and with what fre-
quency documentation of those elements is dictated by stan-
dards of practice and hospital policies for each data element.
This aspect of data quality may also depend on whether the
study population consists of patients with a survivable acute
illness or deterioration from a chronic condition, as these sit-
uations are approached differently in the hospital setting. Pa-
tients suffering from chronic diseases at end-of-life stages
may not generate as much data simply because there are fewer
medical interventions likely to improve their health, and care is
typically deescalated. Their vital signs and test results, while
July 2020
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abnormal, may be stable or unamenable to intervention,
thereby requiring less frequent monitoring than a patient
with a rapidly changing clinical course. This highlights the
need to assess data quality in terms of its fitness for use.

Interestingly, the breadth of data increases as disease se-
verity increases, but only up to the point of terminal illness,
at which point data completeness declines.61,69 Goals of care
at the terminal illness stage shift from curative treatment to
managing symptoms and facilitating comfort, often resulting
in fewer procedures, medications, and medical visits. There-
fore, it makes sense that fewer records would be generated,
and data would be less complete at this stage of illness.

Electronic medical record–based research is retrospective
and observational.8,12,13,55,56,63 For this reason, EMR-based
research has been called hypothesis-generating, rather than
hypothesis-confirming.12,13,55 With this in mind, EMR data
are still a valuable asset to the research community despite
these limitations. Retrospective studies can offer a founda-
tion on which to base prospective or confirmatory research,
which does not entail the same sampling bias problem as ret-
rospective EMR-based studies.

This review is limited by the lack of standardized termi-
nology in health informatics research, and relevant articles
using different terminology may have been missed. To ad-
dress this problem, we used multiple search terms in multi-
ple combinations. However, we used only “EMR” and not
“EHR” (electronic health record) in our search terms, and
this may have limited our results. To assess the potential im-
pact of this limitation, we conducted a search using the same
search terms previously described with “EHR” substituted
for “EMR.”While new articles were found, a review of these
articles did not reveal any additional domains. However, an
additional concept related to both privacy and extraction
was identified: difficulty accessing records for research. Ac-
cess may be limited by privacy laws or by the proprietary na-
ture of software used to generate electronic records,73–75 but
in itself is not exclusive to the use of data for secondary re-
search purposes as this is a primary limitation for access to
medical data in general. Finally, this review was limited to
only studies describing the use of EMR data for research
purposes, not including work on other data quality assess-
ment domains (eg, data quality checking related to data en-
try, clinical use, or clinical quality improvement); thus, there
is potential for additional data quality concepts related to the
use of EMR data in those specific contexts.
CONCLUSION
Privacy concerns, data preprocessing and data quality chal-
lenges, and the potential for limited generalizability are
known challenges encountered when using EMR data for
secondary research purposes. Researchers need to be aware
Volume 38 | Number 7
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of these challenges during the initial planning stages through
to using EMR data for research. While this review provided
only a cursory overview of the conceptual issues to consider
when using EMR data, future work should include a review
focused on clinical studies using EMR to identify common is-
sues encountered and solutions employed that enhance clin-
ical EMR data usefulness. Lastly, continued efforts in the
data quality domain should focus on developing streamlined
data extraction processes, ongoing development of data qual-
ity assessments with standardized applications and reporting
practices, and continued use of standardized terms to con-
tribute in developing and adopting a globally recognized
standard for data quality assessment and reporting.
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