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ABSTRACT
This review examines the current evidence of how prepreg-
nancy obesity (PPO) and gestational diabetes mellitus
(GDM) influence the newborn gut microbiome. Scientific
gaps in the literature are described to guide future research
in this area. The prevalence of PPO and GDM increased to
64% in the United States over the past decade. Prepreg-
nancy obesity and GDM influence newborn gut microbiome
and contribute to adverse short- and long-term outcomes
in full-term infants. This review aims to discuss current re-
search findings related to the associations between PPO
and GDM, separately, and together, on infant gut micro-
biome outcomes, provide an overview of short-term and
long-term outcomes, describe clinical relevance, and iden-
tify avenues for future scientific inquiry. This review found
that PPO and GDM influence infant gut microbiomes. In-
fants born to women with PPO and GDM were found to
have lower levels of diversity in gut microbiota than infants
born to normal prepregnancy weight women and those
born to women without GDM.
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T
he human gut microbiota is a dynamic ecosys-
tem that has a reciprocal relationship with its
host.1–4 The gut microbiota has many functions:

nutrient extraction from food, protection from harmful
pathogens, and contribution to immune function.5 Dis-
turbances in the composition of the microbial makeup,
also known as dysbiosis, and reduction of diversity
of the gut microbiome support the development of
disease.1,2,4–6 To determine the diversity of the gut mi-
crobiome, statistical analysis of sequencing data involv-
ing metagenomics DNA analysis coding for the 16S re-
gion of the bacterial gene allows scientists to analyze
compositional makeup.7 In addition, statistical analysis
of sequencing data describes diversity of species within
the same individual (alpha diversity) and interindividual
species diversity (beta diversity).7 The 2 largest bacte-
rial phyla found in the human gut are Firmicutes and
Bacteroidetes. Firmicutes and Bacteroidetes that coe-
volve with host-microbiome complement the coding
of our genome, contributing to dysbiosis.8 Altered lev-
els of Firmicutes and Bacteroidetes are associated with
obesity.5,8,9 Prepregnancy obesity (PPO) is associated
with gut dysbiosis characterized by elevated levels of
Firmicutes in infants born to normal-weight mothers
and elevated levels of Bacteroidetes in infants born to
mothers who are obese. These data are important be-
cause the maternal transfer of the gut microbiome is
an early-life exposure that contributes to obesity in off-
spring later in life.8,10,11

Obesity rates are rising to significant rates in all pop-
ulations, including women of childbearing ages. Ac-
cording to the most recent data, in the United States,
27% of women giving birth in 2014 had PPO (body
mass index: ≥30 kg/m2),12 which is strongly asso-
ciated with an increased risk for cesarean delivery,
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vaginal delivery complications, and birth injury lead-
ing to unfavorable infant outcomes.12–14 Data suggest
that infants born to a mother with PPO have increased
childhood obesity and arterial stiffness, a reliable an-
tecedent for cardiometabolic disease.15–17 Although as-
sociations have been identified, the exact mechanisms
involved in PPO-induced infant gut dysbiosis remain
uncertain. Recent evidence supports that these effects
may be mediated through pregnancy and infancy.8,15,18

A significant risk factor for the development of gesta-
tional diabetes mellitus (GDM)19 is obesity before15 and
throughout pregnancy.12,20,21 Parallel with the preva-
lence of increasing PPO rates, GDM is consequently
increasing, affecting an estimated 9.2% of pregnan-
cies in the United States.21,22 Multiple neonatal compli-
cations are associated with maternal GDM, including
glucose instability, hyperbilirubinemia, macrosomia,
and subsequent birth-related injuries, prematurity, and
respiratory insufficiency.23 Long term, these infants face
an increased risk for childhood obesity and type 2
diabetes.6,16,24,25 However, GDM is linked to maternal
altered glucose tolerance and hypertension, and in-
fant macrosomia and childhood obesity independent
of PPO.24 The risks for developing metabolic syndrome
and type 2 diabetes are 10 times more likely when PPO
and GDM coexist.26 The maternal gut microbiome and
transfer to their offspring may be linked to these risks.27

Transfer of maternal gut microbiome to offspring born
to women with PPO and GDM together may signifi-
cantly increase risks for adverse offspring body compo-
sition in infancy, childhood, and adolescence.25,27

Various factors influence the infant gut microbiome
composition, such as perinatal environmental expo-
sures, early life stress, and maternal factors.15 Placen-
tal transfer of maternal metabolites from mothers with
GDM (lactate, triglycerides, β-hydroxybutyrate, nones-
terified fatty acids, and glycerol) influences the fetal
metabolome and fetal metabolism, resulting in absence
of phylum-level gut microbiome in offspring born to
GDM mothers.28,29 The influences of PPO and GDM on
the gut microbiome of newborns have critical impli-
cations for early identification of disease development
later in life. Specifically, knowledge of influences on the
infant microbiome may help in explaining the increase
in obesity and cardiometabolic disease rates in infancy,
childhood, and adolescence.

This review provides a discussion of the current body
of literature on influences of PPO and GDM, separately,
and together, on gut microbiome infant outcomes. In
addition, an overview of the identification of areas of
future research is discussed. Essential knowledge can
be gained from human cohort and population health
studies emphasizing how early-life exposure to PPO
and GDM influences the infant gut microbiome.

CURRENT EVIDENCE
Current evidence examining the influences of PPO and
GDM gut microbiome infant outcomes, such as alter-
ations in diversity, remains limited but is the focus of
recent research. Gestational diabetes mellitus is charac-
terized by carbohydrate intolerance, which is healthy
for glucose metabolism before pregnancy but leads to
diabetes during pregnancy.21,30 Women diagnosed with
GDM are considered high-risk, as complications are
common during perinatal and newborn periods and
may also adversely affect the neonatal gut microbiota.2

Human and animal studies exploring causal mecha-
nisms of disease programming suggest that gut mi-
crobiota dysbiosis negatively affects metabolic health
triggering cardiometabolic disease onset later in life.6

In alignment with the “developmental origin of health
and disease” hypothesis, increasing evidence supports
that exposure to prenatal metabolic disorders during
fetal growth may contribute to health outcomes in the
offspring.15,19 In the studies reviewed, microbiota deter-
minants from infant stool samples are operationalized
through the utilization of high-throughput sequencing
and 16S rRNA sequence analysis. It has been hypoth-
esized that scrutiny of gut microbiota may explain the
mechanisms of transgenerational obesity through trans-
fer of the maternal microbiota to their offspring.31

THE INFANT MICROBIOME
Among full-term infants, gut microbiota consists pri-
marily of anaerobic organisms. The “normal” infant
gut microbiota develops by the colonization of faculta-
tive anaerobic organisms, and later developing obligate
anaerobes, including Bifidobacterium, Bacteroides, and
Clostridium.32 These anaerobes are associated with pro-
ducing polysaccharides that mediate microbiota col-
onization, immune modulation, and host-gut cross
talk.33 For example, Clostridium in the infant’s gut, at
high levels, is pathogenic and considered unhealthy.33

After the age of 3 years, the microbial environment
changes rapidly; compositional stability occurs to re-
semble an adult becoming dominated by Firmicutes and
Bacteroidetes.8,34

Gut microbiota is associated with the regulation of
metabolic and immune-inflammatory axes in the liver,
muscle, and brain through host pathways.10 Dysbiosis,
or imbalance of the infant gut microbiome, may be facil-
itated by early exposure to environmental factors such
as bacteria and viruses, which can also alter host micro-
biota. This dysbiosis of microbiota has long-term effects
on host metabolism, leading to metabolic changes, in
particular, type 1 diabetes, autoimmune disease, and
obesity.2,33 In humans, it is suggested that early mi-
crobial patterns may predict excessive weight gain in
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offspring during childhood and later in life.3,33 In addi-
tion, recent literature implicates microbiota-related epi-
genetic changes during early development, thus affect-
ing phenotypic characteristics such as obesity later in
life.3,28 In other words, the infant’s early exposure to
maternal microbiomes through a transfer of maternal
gut microbiota may alter the composition of the infant’s
gut microbiome.

PPO AND INFANT GUT MICROBIOME
Recent research identified that overweight and obese
pregnant women have higher levels of Bacteroides,
Clostridium, and Staphylococcus, and lower levels of
Bifidobacterium in their feces than the normal-weight
women.8,15,19,35 Lower levels of Bifidobacterium are sig-
nificant because they are major contributors to their
host breakdown of glucans and carbohydrates.36 Diver-
sity of the human gut microbiome refers to the vari-
ability of the microbiota. Compositionally, alpha di-
versity describes the most diverse microbiota, while
beta diversity describes factors, such as disease, age,
or culture, that correlate with overall compositional
differences.5 Infants born to mothers with PPO micro-
biomes differ in diversity; however, studies are conflict-
ing. For example, some literature reported that lower
levels of diversity (less variability) were found28,37; con-
versely, other studies reported no significant changes
in diversity.31,38 A similar study found that changes in
diversity occurred, finding that Firmicutes was signifi-
cantly enriched in infants born to normal-weight moth-
ers, whereas Bacteroidetes was significantly enriched
in children born to obese women. This difference is
not surprising, given gut microbiota differs among in-
fants and is strongly affected by other factors such as
mode of delivery, antibiotic usage, and breastfeeding.31

Prepregnancy obesity influences mode of delivery be-
cause the risk of cesarean delivery increases with ma-
ternal PPO.39 Therefore, mode of delivery is known as
the first environmental exposure and influences the in-
fant gut microbiome.40 Infants born vaginally have more
gut microbiome similarities to their mothers with high
abundance of the genera Bifidobacterium, Bacteroides,
Streptococcus, and Clostridium.41 Similarly, studies in-
dicate that excess maternal prepregnancy weight is
associated with differences in neonatal acquisition of
microbiota during vaginal delivery but not cesarean
delivery.38 It has been well established that the gut mi-
crobiota is an important factor in the onset and develop-
ment of metabolic diseases.24,28 Recent advances in mi-
crobiome research suggested that healthy colonization,
the construction of a complex microbial community,
of gut microbiomes begins before birth and rupture of
membranes.1,15 The infant microbiota increases in di-

versity and bacterial abundance during the first days of
life as exposure to the environment and diet changes.34

These associations prompt future investigation since the
influence of PPO on the newborn microbiome is not
entirely known.

GDM AND INFANT MICROBIOME OUTCOMES
Recent research reported that GDM alters the micro-
biota of newborns, contributing to the current un-
derstanding of intergenerational obesity and diabetes
prevalence.2 In addition, one study observed a sig-
nificant reduction in the diversity of various bacterial
types in GDM newborns. These findings indicate that
there might be serious dysbiosis in the gut of GDM
newborns.28 Compared with those of healthy newborns,
GDM newborns could be potentially more predisposed
to develop gastrointestinal diseases and metabolic syn-
drome at later stages in their lives.28 These findings are
consistent with previous findings suggesting that the
gut microbiota in the GDM group was associated with
lower alpha-diversity level compared with the healthy
groups.42 This finding is important because a lower
alpha-diversity level in the gut microbiome is associ-
ated with a higher body mass index.43 The increases in
maternal PPO and GDM are linked to increased body
mass index before and during pregnancy.

SHORT-TERM OUTCOMES
As demonstrated in the current evidence, infant gut mi-
crobiome dysbiosis with PPO and GDM is a vital com-
ponent leading to disease later in life. The short-term
outcomes of early-life exposure to PPO and GDM show
conflicting findings of the influences on the infant’s gut
microbiota. Data support that maternal microbiota may
be transferred to offspring, altering infant gut micro-
biome. The interactions between the microbiome, epi-
genetics, and metabolic systems are likely to play a
significant role in the origin of obesity and metabolic
syndrome, yet the mechanisms continue to be poorly
explained.3 Further research is needed on early-life ex-
posure to understand these mechanisms better.

LONG-TERM OUTCOMES
Prepregnancy obesity and GDM are associated with
dysbiosis in the infant gut microbiome. Further work
is needed to determine specific mechanisms of com-
positional changes in newborns and infants over time.
Research supports that the future health of infants may
be affected as the offspring of GDM mothers is more
likely to develop obesity during childhood and later
in life.6,25 Another study described that as the alpha
diversity of fecal microbiota decreased in children aged
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6 to 16 years, body mass index z score (adjusted for
age and sex of the child) increased.10 The increasing
number of women with PPO and GDM has signifi-
cant implications for the mother and the offspring, as
the dysbiosis of the infant gut microbiome may con-
tribute to childhood obesity and the development of
cardiometabolic disease.

CLINICAL RELEVANCE
A clearer understanding of how PPO and GDM in-
fluence infant gut microbiota will help guide the de-
velopment of screening methods that can identify and
monitor the development of neonatal dysbiosis. Detec-
tion of early biomarkers signaling dysbiosis would drive
early interventions to achieve gut symbiosis. For exam-
ple, prebiotics and probiotics in the infant’s diet have
been associated with increased gut microbiota diversity.
However, it is not known whether this persists after
discontinuation of the prebiotics and probiotics.44 Off-
spring of mothers who have a healthy lifestyle (normal
weight and regular exercise) before pregnancy have
a significantly decreased risk of childhood obesity.45

Increase patient education efforts to reduce PPO and
increase adherence to healthy lifestyle before preg-
nancy to prevent childhood obesity and later in life car-
diometabolic consequences. In addition, nurses must
be aware of the newborn risks associated with GDM
and the increased risks to infants born to mothers with
GDM.

CONCLUSION
The incidence of PPO and GDM is increasing, and both
of these maternal factors influence infant gut micro-
biome outcomes. Maternal transfer of disproportionate
pathogenic bacteria creates an environment that sup-
ports infant gut dysbiosis and may be an important link
to understanding how early-life exposure to maternal
factors influences disease onset later in life. The current
body of evidence examining the effect of PPO and GDM
on the infant’s microbiome is growing and yet conflict-
ing. The newborn microbiome develops and is similar
in composition to the adult by 3 years of age. Short-term
outcomes found that PPO and GDM lower the infant’s
microbiome alpha diversity, which is directly associated
with adulthood obesity. Long-term outcomes are that
dysbiosis of infant gut microbiome may lead to obesity
and cardiometabolic disease in infancy, childhood, and
adolescence.

Although the body of research focused on this prob-
lem is growing, existing evidence is often conflicting,
indicating that further inquiry is warranted to fully ex-
plain how early-life exposure to PPO and GDM influ-

ences the infant gut microbiome. Specifically, future
research must focus on the interconnection between
healthy maternal weight, healthy lifestyle, and maternal
gut microbial environments and infant gut colonization.
Longitudinal studies following the maternal-infant dyad
to study ongoing changes with age and lifestyle influ-
ences are needed to help describe links between mi-
crobiota transfer and external influences. The findings
of future studies should advance current knowledge
in terms of infant gut microbiome and weight man-
agement interventions, important for decreasing risks
for obesity and cardiometabolic disorders. Studies that
connect diet, microbiota, and metabolism in mothers
with obesity/GDM and their offspring remain a critical
unmet need. Finally, efforts to identify meaningful
biomarkers that detect neonatal dysbiosis are required
to define appropriate diagnostic approaches and de-
sign effective early intervention strategies to optimize
infancy, childhood, and adult health outcomes.
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poy C. Role of microbiota function during early life on child’s
neurodevelopment. Trends Food Sci Technol. 2016;57:273–
288.

5. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight
R. Diversity, stability and resilience of the human gut micro-
biota. Nature. 2012;489(7415):220–230.

6. Zhao P, Liu E, Qiao Y, et al. Maternal gestational diabetes
and childhood obesity at age 9-11: Results of a multinational
study. Diabetologia. 2016;59(11):2339–2348.

7. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H,
Sasikala M, Nageshwar Reddy D. Role of the normal gut
microbiota. World J Gastroenterol. 2015;21(29):8787–8803.
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